Definition und Verwendung von Union in der Mathematik

Eine Operation, die häufig verwendet wird, um neue Sätze aus alten zu bilden, heißt Union. Im allgemeinen Sprachgebrauch bedeutet das Wort Gewerkschaft ein Zusammenbringen, wie z. B. Gewerkschaften in der organisierten Arbeit oder die Lage der Nation Adresse, dass die USA Präsident macht vor einer gemeinsamen Sitzung des Kongresses. Im mathematischen Sinne behält die Vereinigung zweier Mengen diese Idee des Zusammenbringens bei. Genauer gesagt, die Vereinigung zweier Mengen EIN und B. ist die Menge aller Elemente x so dass x ist ein Element der Menge EIN oder x ist ein Element der Menge B.. Das Wort, das bedeutet, dass wir eine Vereinigung verwenden, ist das Wort "oder".

Das Wort "Oder"

Wenn wir das Wort "oder" in täglichen Gesprächen verwenden, stellen wir möglicherweise nicht fest, dass dieses Wort auf zwei verschiedene Arten verwendet wird. Der Weg wird normalerweise aus dem Kontext des Gesprächs abgeleitet. Wenn Sie gefragt würden: "Möchten Sie das Huhn oder das Steak?" Die übliche Implikation ist, dass Sie vielleicht das eine oder das andere haben, aber nicht beide. Vergleichen Sie dies mit der Frage: "Möchten Sie Butter oder Sauerrahm auf Ihrer Ofenkartoffel?" Hier ist "oder" im inklusiven Sinne verwendet, indem Sie nur Butter, nur saure Sahne oder sowohl Butter als auch sauer wählen konnten Sahne.

instagram viewer

In der Mathematik wird das Wort "oder" im inklusiven Sinne verwendet. Also die Aussage "x ist ein Element von EIN oder ein Element von B."bedeutet, dass einer der drei möglich ist:

  • x ist ein Element von gerecht EIN und kein Element von B.
  • x ist ein Element von gerecht B. und kein Element von EIN.
  • x ist ein Element von beiden EIN und B.. (Das könnten wir auch sagen x ist ein Element der Schnittmenge von EIN und B.

Beispiel

Als Beispiel dafür, wie die Vereinigung zweier Mengen eine neue Menge bildet, betrachten wir die Mengen EIN = {1, 2, 3, 4, 5} und B. = {3, 4, 5, 6, 7, 8}. Um die Vereinigung dieser beiden Mengen zu finden, listen wir einfach jedes Element auf, das wir sehen, und achten darauf, keine Elemente zu duplizieren. Die Zahlen 1, 2, 3, 4, 5, 6, 7, 8 befinden sich entweder in der einen oder in der anderen Menge, daher die Vereinigung von EIN und B. ist {1, 2, 3, 4, 5, 6, 7, 8}.

Notation für Union

Neben dem Verständnis der Konzepte für Operationen der Mengenlehre ist es wichtig, Symbole lesen zu können, die zur Bezeichnung dieser Operationen verwendet werden. Das Symbol für die Vereinigung der beiden Mengen EIN und B. ist gegeben durch EINB.. Eine Möglichkeit, sich an das Symbol ∪ zu erinnern, das sich auf die Vereinigung bezieht, besteht darin, seine Ähnlichkeit mit einem Großbuchstaben U zu bemerken Abkürzung für das Wort "Union". Seien Sie vorsichtig, denn das Symbol für Vereinigung ist dem Symbol für sehr ähnlich Überschneidung. Einer wird durch einen vertikalen Flip vom anderen erhalten.

Um diese Notation in Aktion zu sehen, lesen Sie das obige Beispiel. Hier hatten wir die Sets EIN = {1, 2, 3, 4, 5} und B. = {3, 4, 5, 6, 7, 8}. Also würden wir die Mengengleichung schreiben EINB. = {1, 2, 3, 4, 5, 6, 7, 8 }.

Vereinigung mit dem leeren Satz

Eine grundlegende Identität, die die Vereinigung betrifft, zeigt uns, was passiert, wenn wir die Vereinigung einer Menge mit der leeren Menge nehmen, die mit # 8709 bezeichnet ist. Die leere Menge ist die Menge ohne Elemente. Das Verbinden mit einem anderen Set hat also keine Auswirkung. Mit anderen Worten, die Vereinigung eines Satzes mit dem leeren Satz gibt uns den ursprünglichen Satz zurück

Diese Identität wird durch die Verwendung unserer Notation noch kompakter. Wir haben die Identität: EIN ∪ ∅ = EIN.

Vereinigung mit dem Universal Set

Was passiert für das andere Extrem, wenn wir das untersuchen? Vereinigung eines Satzes mit dem universellen Set? Da die universelle Menge jedes Element enthält, können wir dem nichts hinzufügen. Die Vereinigung oder irgendein Satz mit dem universellen Satz ist also der universelle Satz.

Wieder hilft uns unsere Notation, diese Identität in einem kompakteren Format auszudrücken. Für jeden Satz EIN und das universelle Set U., EINU. = U..

Andere Identitäten, an denen die Union beteiligt ist

Es gibt viel mehr festgelegte Identitäten, die die Verwendung der Gewerkschaftsoperation beinhalten. Natürlich ist es immer gut zu trainieren mit der Sprache der Mengenlehre. Einige der wichtigsten sind unten aufgeführt. Für alle Sets EIN, und B. und D. wir haben:

  • Reflexive Eigenschaft: EINEIN =EIN
  • Kommutativgesetz: EINB. = B.EIN
  • Assoziatives Eigentum: (EINB.) ∪ D. =EIN ∪ (B.D.)
  • DeMorgans Gesetz I: (EINB.)C. = EINC.B.C.
  • DeMorgans Gesetz II: (EINB.)C. = EINC.B.C.