Die Binomialverteilung beinhaltet a diskret zufällige Variable. Wahrscheinlichkeiten in einer Binomialeinstellung kann auf einfache Weise berechnet werden, indem die Formel für einen Binomialkoeffizienten verwendet wird. Während dies theoretisch eine einfache Berechnung ist, kann es in der Praxis ziemlich mühsam oder sogar rechnerisch unmöglich werden Binomialwahrscheinlichkeiten berechnen. Diese Probleme können umgangen werden, indem stattdessen a verwendet wird Normalverteilungeine Binomialverteilung zu approximieren. Wir werden sehen, wie dies zu tun ist, indem wir die Schritte einer Berechnung durchlaufen.
Schritte zur Verwendung der normalen Näherung
Zunächst müssen wir feststellen, ob es angemessen ist, die normale Näherung zu verwenden. Nicht jeder Binomialverteilung ist dasselbe. Einige zeigen genug Schiefe dass wir keine normale Annäherung verwenden können. Um zu überprüfen, ob die normale Näherung verwendet werden sollte, müssen wir den Wert von betrachten p, was die Erfolgswahrscheinlichkeit ist, und n, das ist die Anzahl der Beobachtungen unserer Binomialvariable.
Um die normale Näherung zu verwenden, betrachten wir beide np und n( 1 - p ). Wenn diese beiden Zahlen größer oder gleich 10 sind, ist es gerechtfertigt, die normale Näherung zu verwenden. Dies ist eine allgemeine Faustregel und in der Regel umso größer, je größer die Werte von sind np und n( 1 - p ), desto besser ist die Annäherung.
Vergleich zwischen Binomial und Normal
Wir werden eine genaue Binomialwahrscheinlichkeit mit der durch normale Näherung erhaltenen vergleichen. Wir betrachten das Werfen von 20 Münzen und möchten die Wahrscheinlichkeit wissen, dass fünf Münzen oder weniger Köpfe waren. Wenn X. ist die Anzahl der Köpfe, dann wollen wir den Wert finden:
P (X. = 0) + P (X. = 1) + P (X. = 2) + P (X. = 3) + P (X. = 4) + P (X. = 5).
Das Verwendung der Binomialformel für jede dieser sechs Wahrscheinlichkeiten zeigt sich, dass die Wahrscheinlichkeit 2,0695% beträgt. Wir werden nun sehen, wie nahe unsere normale Annäherung an diesem Wert liegt.
Wenn wir die Bedingungen überprüfen, sehen wir, dass beide np und np(1 - p) sind gleich 10. Dies zeigt, dass wir in diesem Fall die normale Näherung verwenden können. Wir werden eine Normalverteilung mit dem Mittelwert von verwenden np = 20 (0,5) = 10 und eine Standardabweichung von (20 (0,5) (0,5))0.5 = 2.236.
Um die Wahrscheinlichkeit zu bestimmen, dass X. ist kleiner oder gleich 5 müssen wir die finden z-score für 5 in der Normalverteilung, die wir verwenden. Somit z = (5 – 10)/2.236 = -2.236. Durch Konsultation eines Tisches von z-scores wir sehen, dass die Wahrscheinlichkeit, dass z ist kleiner oder gleich -2,236 ist 1,267%. Dies weicht von der tatsächlichen Wahrscheinlichkeit ab, liegt jedoch innerhalb von 0,8%.
Kontinuitätskorrekturfaktor
Um unsere Schätzung zu verbessern, ist es angebracht, einen Kontinuitätskorrekturfaktor einzuführen. Dies wird verwendet, weil a Normalverteilung ist kontinuierlich während die Binomialverteilung ist diskret. Für eine binomiale Zufallsvariable ein Wahrscheinlichkeitshistogramm für X. = 5 enthält einen Balken, der von 4,5 bis 5,5 reicht und bei 5 zentriert ist.
Dies bedeutet, dass für das obige Beispiel die Wahrscheinlichkeit, dass X. ist kleiner oder gleich 5 für eine Binomialvariable sollte durch die Wahrscheinlichkeit geschätzt werden, dass X. ist kleiner oder gleich 5,5 für eine kontinuierliche Normalvariable. Somit z = (5.5 – 10)/2.236 = -2.013. Die Wahrscheinlichkeit, dass z