Ein Konfidenzintervall ist ein Maß für die Schätzung, das typischerweise verwendet wird in der quantitativen soziologischen Forschung. Es ist ein geschätzter Wertebereich, der wahrscheinlich die Populationsparameter wird berechnet. Anstatt beispielsweise das Durchschnittsalter einer bestimmten Bevölkerung auf einen einzigen Wert wie 25,5 Jahre zu schätzen, könnten wir sagen, dass das Durchschnittsalter irgendwo zwischen 23 und 28 Jahren liegt. Dieses Konfidenzintervall enthält den einzelnen Wert, den wir schätzen, aber es gibt uns ein breiteres Netz, um richtig zu sein.
Wenn wir Konfidenzintervalle verwenden, um eine Zahl oder einen Populationsparameter zu schätzen, können wir auch schätzen, wie genau unsere Schätzung ist. Die Wahrscheinlichkeit, dass unser Konfidenzintervall den Populationsparameter enthält, wird als Konfidenzniveau bezeichnet. Wie sicher sind wir zum Beispiel, dass unser Konfidenzintervall von 23 bis 28 Jahren das Durchschnittsalter unserer Bevölkerung enthält? Wenn dieser Altersbereich mit einem Konfidenzniveau von 95 Prozent berechnet würde, könnten wir sagen, dass wir zu 95 Prozent davon überzeugt sind, dass das Durchschnittsalter unserer Bevölkerung zwischen 23 und 28 Jahren liegt. Oder es besteht eine Wahrscheinlichkeit von 95 von 100, dass das Durchschnittsalter der Bevölkerung zwischen 23 und 28 Jahren liegt.
Konfidenzniveaus können für jedes Konfidenzniveau erstellt werden. Die am häufigsten verwendeten sind jedoch 90 Prozent, 95 Prozent und 99 Prozent. Je größer das Konfidenzniveau ist, desto enger ist das Konfidenzintervall. Wenn wir beispielsweise ein Konfidenzniveau von 95 Prozent verwendeten, lag unser Konfidenzintervall zwischen 23 und 28 Jahren. Wenn wir ein Konfidenzniveau von 90 Prozent verwenden, um das Konfidenzniveau für das Durchschnittsalter unserer Bevölkerung zu berechnen, kann unser Konfidenzintervall zwischen 25 und 26 Jahren liegen. Wenn wir dagegen ein Konfidenzniveau von 99 Prozent verwenden, kann unser Konfidenzintervall zwischen 21 und 30 Jahren liegen.
Berechnung des Konfidenzintervalls
Die Berechnung des Konfidenzniveaus für Mittelwerte erfolgt in vier Schritten.
- Berechnen Sie den Standardfehler des Mittelwerts.
- Entscheiden Sie sich für das Vertrauensniveau (d. H. 90 Prozent, 95 Prozent, 99 Prozent usw.). Suchen Sie dann den entsprechenden Z-Wert. Dies kann normalerweise mit einer Tabelle in einem Anhang eines Statistiklehrbuchs erfolgen. Als Referenz beträgt der Z-Wert für ein 95-Prozent-Konfidenzniveau 1,96, während der Z-Wert für ein 90-Prozent-Konfidenzniveau 1,65 und der Z-Wert für ein 99-Prozent-Konfidenzniveau 2,58 beträgt.
- Berechnen Sie das Konfidenzintervall. *
- Interpretieren Sie die Ergebnisse.
* Die Formel zur Berechnung des Konfidenzintervalls lautet: CI = Stichprobenmittelwert +/- Z-Punktzahl (Standardfehler des Mittelwerts).
Wenn wir das Durchschnittsalter für unsere Bevölkerung auf 25,5 schätzen, berechnen wir den Standardfehler des Mittelwerts auf 1,2 und Wir wählen ein Konfidenzniveau von 95 Prozent (denken Sie daran, der Z-Wert hierfür beträgt 1,96). Unsere Berechnung würde so aussehen Dies:
CI = 25,5 - 1,96 (1,2) = 23,1 und
CI = 25,5 + 1,96 (1,2) = 27,9.
Somit beträgt unser Konfidenzintervall 23,1 bis 27,9 Jahre. Dies bedeutet, dass wir zu 95 Prozent sicher sein können, dass das tatsächliche Durchschnittsalter der Bevölkerung nicht weniger als 23,1 Jahre und nicht mehr als 27,9 Jahre beträgt. Mit anderen Worten, wenn wir Sammeln Sie eine große Menge von Proben (z. B. 500) aus der interessierenden Population, 95-mal von 100, der wahre Populationsmittelwert würde in unsere Berechnung einbezogen Intervall. Bei einem Konfidenzniveau von 95 Prozent besteht eine Wahrscheinlichkeit von 5 Prozent, dass wir falsch liegen. Fünfmal von 100 wird der wahre Bevölkerungsdurchschnitt nicht in unser angegebenes Intervall einbezogen.
Aktualisiert von Nicki Lisa Cole, Ph. D.