Beispiel für ein Konfidenzintervall für Varianz

Die Populationsvarianz gibt einen Hinweis darauf, wie ein Datensatz verteilt werden soll. Leider ist es normalerweise unmöglich, genau zu wissen, was dieser Populationsparameter ist. Um unseren Mangel an Wissen auszugleichen, verwenden wir ein Thema aus der Inferenzstatistik namens Vertrauensintervalle. Wir werden ein Beispiel sehen, wie ein Konfidenzintervall für eine Populationsvarianz berechnet wird.

Konfidenzintervallformel

Die Formel für (1 - α) Konfidenzintervall über die Populationsvarianz. Wird durch die folgende Folge von Ungleichungen gegeben:

[ (n - 1)s2] / B. < σ2 < [ (n - 1)s2] / EIN.

Hier n ist die Stichprobengröße, s2 ist die Stichprobenvarianz. Die Nummer EIN ist der Punkt der Chi-Quadrat-Verteilung mit n -1 Freiheitsgrade, bei denen genau α / 2 der Fläche unter der Kurve links von liegt EIN. In ähnlicher Weise die Nummer B. ist der Punkt der gleichen Chi-Quadrat-Verteilung mit genau α / 2 der Fläche unter der Kurve rechts von B..

Vorbereitungen

Wir beginnen mit einem Datensatz mit 10 Werten. Dieser Satz von Datenwerten wurde durch eine einfache Zufallsstichprobe erhalten:

instagram viewer

97, 75, 124, 106, 120, 131, 94, 97,96, 102

Eine explorative Datenanalyse wäre erforderlich, um zu zeigen, dass es keine Ausreißer gibt. Durch die Konstruktion eines Stamm- und Blattplot Wir sehen, dass diese Daten wahrscheinlich aus einer Verteilung stammen, die ungefähr normal verteilt ist. Dies bedeutet, dass wir mit der Ermittlung eines 95% -Konfidenzintervalls für die Populationsvarianz fortfahren können.

Stichprobenvarianz

Wir müssen die Populationsvarianz mit der Stichprobenvarianz schätzen, die mit bezeichnet wird s2. Wir beginnen also mit der Berechnung dieser Statistik. Im Wesentlichen mitteln wir die Summe der quadratischen Abweichungen vom Mittelwert. Anstatt diese Summe durch zu teilen n wir teilen es durch n - 1.

Wir stellen fest, dass der Stichprobenmittelwert 104,2 beträgt. Damit haben wir die Summe der quadratischen Abweichungen vom Mittelwert gegeben durch:

(97 – 104.2)2 + (75 – 104.3)2 +... + (96 – 104.2)2 + (102 – 104.2)2 = 2495.6

Wir teilen diese Summe durch 10 - 1 = 9, um eine Stichprobenvarianz von 277 zu erhalten.

Chi-Quadrat-Verteilung

Wir wenden uns nun unserer Chi-Quadrat-Verteilung zu. Da wir 10 Datenwerte haben, haben wir 9 Freiheitsgrade. Da wir die mittleren 95% unserer Verteilung wollen, benötigen wir 2,5% in jedem der beiden Schwänze. Wir konsultieren eine Chi-Quadrat-Tabelle oder Software und stellen fest, dass die Tabellenwerte von 2.7004 und 19.023 95% der Verteilungsfläche einschließen. Diese Zahlen sind EIN und B., beziehungsweise.

Wir haben jetzt alles, was wir brauchen, und wir sind bereit, unser Konfidenzintervall zusammenzustellen. Die Formel für den linken Endpunkt lautet [(n - 1)s2] / B.. Dies bedeutet, dass unser linker Endpunkt ist:

(9 x 277) / 19,023 = 133

Der richtige Endpunkt wird durch Ersetzen gefunden B. mit EIN:

(9 x 277) / 2.7004 = 923

Wir sind daher zu 95% davon überzeugt, dass die Populationsvarianz zwischen 133 und 923 liegt.

Bevölkerungsstandardabweichung

Da die Standardabweichung die Quadratwurzel der Varianz ist, könnte diese Methode natürlich verwendet werden, um ein Konfidenzintervall für die Populationsstandardabweichung zu erstellen. Alles, was wir tun müssten, ist, Quadratwurzeln der Endpunkte zu ziehen. Das Ergebnis wäre ein 95% -Konfidenzintervall für die Standardabweichung.