Berechnung der Backgammon-Wahrscheinlichkeiten

Backgammon ist ein Spiel, bei dem zwei Standardwürfel verwendet werden. Die in diesem Spiel verwendeten Würfel sind sechsseitige Würfel, und die Gesichter eines Würfels haben einen, zwei, drei, vier, fünf oder sechs Pips. Während einer Backgammon-Runde kann ein Spieler seine Steine ​​oder Entwürfe gemäß den auf den Würfeln angegebenen Zahlen bewegen. Die gewürfelten Zahlen können auf zwei Prüfer aufgeteilt werden oder sie können summiert und für einen einzelnen Prüfer verwendet werden. Wenn beispielsweise eine 4 und eine 5 gewürfelt werden, hat ein Spieler zwei Möglichkeiten: Er kann einen Stein um vier Felder und einen weiteren um fünf Felder bewegen, oder ein Stein kann um insgesamt neun Felder verschoben werden.

Um Strategien im Backgammon zu formulieren, ist es hilfreich, einige grundlegende Wahrscheinlichkeiten zu kennen. Da ein Spieler einen oder zwei Würfel verwenden kann, um einen bestimmten Stein zu bewegen, wird dies bei jeder Berechnung der Wahrscheinlichkeiten berücksichtigt. Für unsere Backgammon-Wahrscheinlichkeiten werden wir die Frage beantworten: „Wenn wir zwei Würfel werfen, wie hoch ist die Wahrscheinlichkeit, die Zahl zu würfeln?

instagram viewer
n entweder als Summe von zwei Würfeln oder auf mindestens einem der beiden Würfel? “

Berechnung der Wahrscheinlichkeiten

Bei einem einzelnen Würfel, der nicht geladen ist, ist es gleich wahrscheinlich, dass jede Seite mit der Vorderseite nach oben landet. Ein einzelner Würfel bildet a UniformProbenraum. Es gibt insgesamt sechs Ergebnisse, die jeder der ganzen Zahlen von 1 bis 6 entsprechen. Somit hat jede Zahl eine Wahrscheinlichkeit von 1/6 des Auftretens.

Wenn wir zwei Würfel werfen, ist jeder Würfel unabhängig vom anderen. Wenn wir die Reihenfolge verfolgen, in der die Anzahl der Würfel auftritt, ergeben sich insgesamt 6 x 6 = 36 gleich wahrscheinliche Ergebnisse. Somit ist 36 der Nenner für alle unsere Wahrscheinlichkeiten und jedes bestimmte Ergebnis von zwei Würfeln hat eine Wahrscheinlichkeit von 1/36.

Mindestens eine Nummer rollen

Die Wahrscheinlichkeit, zwei Würfel zu würfeln und mindestens einen von einer Zahl von 1 bis 6 zu erhalten, ist einfach zu berechnen. Wenn wir die Wahrscheinlichkeit bestimmen möchten, mindestens eine 2 mit zwei Würfeln zu würfeln, müssen wir wissen, wie viele der 36 möglichen Ergebnisse mindestens eine 2 enthalten. Die Möglichkeiten hierfür sind:

(1, 2), (2, 2), (3, 2), (4, 2), (5, 2), (6, 2), (2, 1), (2, 3), (2, 4), (2, 5), (2, 6)

Somit gibt es 11 Möglichkeiten, mindestens eine 2 mit zwei Würfeln zu würfeln, und die Wahrscheinlichkeit, mindestens eine 2 mit zwei Würfeln zu würfeln, beträgt 11/36.

2 in der vorhergehenden Diskussion hat nichts Besonderes. Für eine bestimmte Anzahl n von 1 bis 6:

  • Es gibt fünf Möglichkeiten, genau eine dieser Zahlen beim ersten Würfel zu würfeln.
  • Es gibt fünf Möglichkeiten, genau eine dieser Zahlen auf dem zweiten Würfel zu würfeln.
  • Es gibt eine Möglichkeit, diese Zahl auf beiden Würfeln zu würfeln.

Daher gibt es 11 Möglichkeiten, mindestens eine zu würfeln n von 1 bis 6 mit zwei Würfeln. Die Wahrscheinlichkeit dafür liegt bei 11/36.

Eine bestimmte Summe rollen

Eine beliebige Zahl von zwei bis 12 kann als Summe von zwei Würfeln erhalten werden. Das Wahrscheinlichkeiten für zwei Würfel sind etwas schwieriger zu berechnen. Da es verschiedene Wege gibt, diese Summen zu erreichen, bilden sie keinen einheitlichen Probenraum. Zum Beispiel gibt es drei Möglichkeiten, eine Summe von vier zu würfeln: (1, 3), (2, 2), (3, 1), aber nur zwei Möglichkeiten, eine Summe von 11 zu würfeln: (5, 6), ( 6, 5).

Die Wahrscheinlichkeit, eine Summe einer bestimmten Zahl zu würfeln, ist wie folgt:

  • Die Wahrscheinlichkeit, eine Summe von zwei zu würfeln, beträgt 1/36.
  • Die Wahrscheinlichkeit, eine Summe von drei zu würfeln, beträgt 2/36.
  • Die Wahrscheinlichkeit, eine Summe von vier zu würfeln, beträgt 3/36.
  • Die Wahrscheinlichkeit, eine Summe von fünf zu würfeln, beträgt 4/36.
  • Die Wahrscheinlichkeit, eine Summe von sechs zu würfeln, beträgt 5/36.
  • Die Wahrscheinlichkeit, eine Summe von sieben zu würfeln, beträgt 6/36.
  • Die Wahrscheinlichkeit, eine Summe von acht zu würfeln, beträgt 5/36.
  • Die Wahrscheinlichkeit, eine Summe von neun zu würfeln, beträgt 4/36.
  • Die Wahrscheinlichkeit, eine Summe von zehn zu würfeln, beträgt 3/36.
  • Die Wahrscheinlichkeit, eine Summe von elf zu würfeln, beträgt 2/36.
  • Die Wahrscheinlichkeit, eine Summe von zwölf zu würfeln, beträgt 1/36.

Backgammon-Wahrscheinlichkeiten

Endlich haben wir alles, was wir brauchen, um die Wahrscheinlichkeiten für Backgammon zu berechnen. Es wird mindestens eine Nummer gewürfelt sich gegenseitig ausschließen vom Würfeln dieser Zahl als Summe von zwei Würfeln. Somit können wir die verwenden Additionsregel Addieren der Wahrscheinlichkeiten zum Erhalten einer beliebigen Zahl von 2 bis 6.

Zum Beispiel beträgt die Wahrscheinlichkeit, mindestens eine 6 von zwei Würfeln zu werfen, 11/36. Eine 6 als Summe von zwei Würfeln zu würfeln ist 5/36. Die Wahrscheinlichkeit, mindestens eine 6 oder eine Sechs als Summe von zwei Würfeln zu würfeln, beträgt 11/36 + 5/36 = 16/36. Andere Wahrscheinlichkeiten können auf ähnliche Weise berechnet werden.