Das Trägheitsmoment eines Objekts ist ein berechnetes Maß für einen starren Körper, der eine Rotationsbewegung um einen festen Körper ausführt Achse: Das heißt, es wird gemessen, wie schwierig es wäre, die aktuelle Drehzahl eines Objekts zu ändern. Diese Messung wird basierend auf der Verteilung der Masse innerhalb des Objekts und der Position der Achse berechnet, was bedeutet, dass Das gleiche Objekt kann je nach Position und Ausrichtung der Achse von sehr unterschiedliche Trägheitsmomentwerte haben Drehung.
Konzeptionell Trägheitsmoment kann als Repräsentation des Widerstands des Objekts gegen Veränderungen angesehen werden Winkelgeschwindigkeit, ähnlich wie Masse stellt einen Widerstand gegen die Änderung in dar Geschwindigkeit in nicht rotierender Bewegung unter Newtons Bewegungsgesetze. Die Berechnung des Trägheitsmoments gibt die Kraft an, die erforderlich wäre, um die Drehung eines Objekts zu verlangsamen, zu beschleunigen oder zu stoppen.
Das internationale Einheitensystem (SI-Einheit
) des Trägheitsmoments beträgt ein Kilogramm pro Quadratmeter (kg-m)2). In Gleichungen wird es normalerweise durch die Variable dargestellt ich oder ichP. (wie in der gezeigten Gleichung).Einfache Beispiele für Trägheitsmomente
Wie schwierig ist es, ein bestimmtes Objekt zu drehen (es in einem kreisförmigen Muster relativ zu einem Drehpunkt zu bewegen)? Die Antwort hängt von der Form des Objekts ab und davon, wo sich die Masse des Objekts konzentriert. So ist beispielsweise der Trägheitsgrad (Änderungswiderstand) in einem Rad mit einer Achse in der Mitte ziemlich gering. Die gesamte Masse ist gleichmäßig um den Drehpunkt verteilt, sodass ein geringes Drehmoment auf das Rad in der richtigen Richtung dazu führt, dass es seine Geschwindigkeit ändert. Es ist jedoch viel schwieriger und das gemessene Trägheitsmoment wäre größer, wenn Sie versuchen würden, dasselbe Rad gegen seine Achse zu drehen oder einen Telefonmast zu drehen.
Trägheitsmoment verwenden
Das Trägheitsmoment eines Objekts, das sich um ein festes Objekt dreht, ist nützlich bei der Berechnung von zwei Schlüsselgrößen in Rotationsbewegung:
- Rotation kinetische Energie:K. = Iω2
- Drehimpuls:L. = Iω
Möglicherweise stellen Sie fest, dass die obigen Gleichungen den Formeln für lineare kinetische Energie und Impuls mit Trägheitsmoment sehr ähnlich sind. "ICH" an die Stelle der Masse treten "m " und Winkelgeschwindigkeit "ω" an die Stelle der Geschwindigkeit treten "v, "was wiederum die Ähnlichkeiten zwischen den verschiedenen Konzepten in der Rotationsbewegung und in den traditionelleren Fällen der linearen Bewegung zeigt.
Trägheitsmoment berechnen
Die Grafik auf dieser Seite zeigt eine Gleichung zur Berechnung des Trägheitsmoments in seiner allgemeinsten Form. Es besteht im Wesentlichen aus den folgenden Schritten:
- Messen Sie den Abstand r von jedem Teilchen im Objekt zur Symmetrieachse
- Quadrieren Sie diese Entfernung
- Multiplizieren Sie diesen quadratischen Abstand mit der Masse des Partikels
- Wiederholen Sie dies für jedes Partikel im Objekt
- Addieren Sie alle diese Werte
Für ein extrem einfaches Objekt mit einer klar definierten Anzahl von Partikeln (oder Komponenten, die sein können behandelt als Partikel) ist es möglich, diesen Wert wie oben beschrieben nur mit Brute-Force zu berechnen. In der Realität sind die meisten Objekte jedoch so komplex, dass dies nicht besonders machbar ist (obwohl eine clevere Computercodierung die Brute-Force-Methode ziemlich einfach machen kann).
Stattdessen gibt es eine Vielzahl von Methoden zur Berechnung des Trägheitsmoments, die besonders nützlich sind. Eine Reihe gängiger Objekte, wie rotierende Zylinder oder Kugeln, sind sehr genau definiert Trägheitsmomentformeln. Es gibt mathematische Mittel, um das Problem anzugehen und das Trägheitsmoment für Objekte zu berechnen, die ungewöhnlicher und unregelmäßiger sind und daher eine größere Herausforderung darstellen.