Was Sie über Mikrowellenstrahlung wissen müssen

Mikrowellenstrahlung ist eine Art von elektromagnetische Strahlung. Das Präfix "Mikro-" in Mikrowellen bedeutet nicht, dass Mikrowellen Mikrometerwellenlängen haben, sondern vielmehr Mikrowellen haben im Vergleich zu herkömmlichen Radiowellen sehr kleine Wellenlängen (1 mm bis 100.000 km) Wellenlängen). Im elektromagnetischen Spektrum fallen Mikrowellen zwischen Infrarotstrahlung und Radiowellen.

Frequenzen

Mikrowellenstrahlung hat eine Frequenz zwischen 300 MHz und 300 GHz (1 GHz bis 100 GHz in der Funktechnik) oder a Wellenlänge im Bereich von 0,1 cm bis 100 cm. Der Bereich umfasst die Funkbänder SHF (Superhochfrequenz), UHF (Ultrahochfrequenz) und EHF (Extremhochfrequenz oder Millimeterwellen).

Während niederfrequente Radiowellen den Konturen der Erde folgen und von Schichten in der Erde abprallen können Atmosphäre bewegen sich Mikrowellen nur in Sichtweite, normalerweise begrenzt auf 30-40 Meilen auf der Erde Oberfläche. Eine weitere wichtige Eigenschaft der Mikrowellenstrahlung ist, dass sie von Feuchtigkeit absorbiert wird. Ein Phänomen namens

Regen verblassen tritt am oberen Ende des Mikrowellenbandes auf. Nach 100 GHz absorbieren andere Gase in der Atmosphäre die Energie und machen die Luft im Mikrowellenbereich undurchsichtig, obwohl sie transparent ist das sichtbare und Infrarotbereich.

Bandbezeichnungen

Da Mikrowellenstrahlung einen so breiten Wellenlängen- / Frequenzbereich umfasst, wird sie in IEEE-, NATO-, EU- oder andere Radarbandbezeichnungen unterteilt:

Bandbezeichnung Frequenz Wellenlänge Verwendet
L Band 1 bis 2 GHz 15 bis 30 cm Amateurfunk, Mobiltelefone, GPS, Telemetrie
S Band 2 bis 4 GHz 7,5 bis 15 cm Radioastronomie, Wetterradar, Mikrowellenherde, Bluetooth, einige Kommunikationssatelliten, Amateurfunk, Handys
C-Band 4 bis 8 GHz 3,75 bis 7,5 cm Fernfunk
X-Band 8 bis 12 GHz 25 bis 37,5 mm Satellitenkommunikation, terrestrisches Breitband, Weltraumkommunikation, Amateurfunk, Spektroskopie
K.u Band 12 bis 18 GHz 16,7 bis 25 mm Satellitenkommunikation, Spektroskopie
K Band 18 bis 26,5 GHz 11,3 bis 16,7 mm Satellitenkommunikation, Spektroskopie, Autoradar, Astronomie
K.ein Band 26,5 bis 40 GHz 5,0 bis 11,3 mm Satellitenkommunikation, Spektroskopie
Q Band 33 bis 50 GHz 6,0 bis 9,0 mm Automobilradar, molekulare Rotationsspektroskopie, terrestrische Mikrowellenkommunikation, Radioastronomie, Satellitenkommunikation
U Band 40 bis 60 GHz 5,0 bis 7,5 mm
V-Band 50 bis 75 GHz 4,0 bis 6,0 mm molekulare Rotationsspektroskopie, Millimeterwellenforschung
W Band 75 bis 100 GHz 2,7 bis 4,0 mm Radar-Targeting und Tracking, Fahrzeugradar, Satellitenkommunikation
F Band 90 bis 140 GHz 2,1 bis 3,3 mm SHF, Radioastronomie, die meisten Radargeräte, Satellitenfernsehen, WLAN
D Band 110 bis 170 GHz 1,8 bis 2,7 mm EHF, Mikrowellenrelais, Energiewaffen, Millimeterwellenscanner, Fernerkundung, Amateurfunk, Radioastronomie

Verwendet

Mikrowellen werden hauptsächlich für die Kommunikation verwendet und umfassen analoge und digitale Sprach-, Daten- und Videoübertragungen. Sie werden auch für Radar (RAdio Detection and Ranging) zur Wetterverfolgung, Radargeschwindigkeitskanonen und Flugsicherung verwendet. Radioteleskope Verwenden Sie große Antennen, um Entfernungen zu bestimmen, Oberflächen zu kartieren und Funksignaturen von Planeten, Nebeln, Sternen und Galaxien zu untersuchen. Mikrowellen werden verwendet, um Wärmeenergie zum Erhitzen von Lebensmitteln und anderen Materialien zu übertragen.

Quellen

Kosmische Mikrowelle Hintergrundstrahlung ist eine natürliche Quelle für Mikrowellen. Die Strahlung wird untersucht, um Wissenschaftlern das Verständnis des Urknalls zu erleichtern. Sterne, einschließlich der Sonne, sind natürliche Mikrowellenquellen. Unter den richtigen Bedingungen können Atome und Moleküle Mikrowellen emittieren. Vom Menschen geschaffene Mikrowellenquellen umfassen Mikrowellenöfen, Masern, Schaltkreise, Kommunikationsübertragungstürme und Radar.

Zur Erzeugung von Mikrowellen können entweder Festkörpervorrichtungen oder spezielle Vakuumröhren verwendet werden. Beispiele für Festkörpervorrichtungen umfassen Masern (im Wesentlichen Laser, bei denen das Licht im Mikrowellenbereich liegt), Gunn-Dioden, Feldeffekttransistoren und IMPATT-Dioden. Die Vakuumröhrengeneratoren verwenden elektromagnetische Felder zum Lenken Elektronen in einem dichtemodulierten Modus, in dem Gruppen von Elektronen eher durch die Vorrichtung als durch einen Strom laufen. Diese Vorrichtungen umfassen das Klystron, das Gyrotron und das Magnetron.

Auswirkungen auf die Gesundheit

Mikrowellenstrahlung heißt "Strahlung"weil es nach außen strahlt und nicht weil es entweder radioaktiv oder ionisierend ist. Es ist nicht bekannt, dass geringe Mengen an Mikrowellenstrahlung gesundheitsschädliche Auswirkungen haben. Einige Studien weisen jedoch darauf hin, dass eine Langzeitexposition als Karzinogen wirken kann.

Mikrowelleneinwirkung kann Katarakte verursachen, da durch dielektrische Erwärmung Proteine ​​in der Augenlinse denaturiert und diese milchig werden. Während alle Gewebe anfällig für Erwärmung sind, ist das Auge besonders anfällig, da es keine Blutgefäße zur Modulation der Temperatur hat. Mikrowellenstrahlung ist mit dem verbunden Mikrowellen-Hörwirkung, bei der Mikrowellenbelichtung summende Geräusche und Klicks erzeugt. Dies wird durch die Wärmeausdehnung im Innenohr verursacht.

Mikrowellenverbrennungen können in tieferem Gewebe auftreten - nicht nur an der Oberfläche -, da Mikrowellen von Gewebe, das viel Wasser enthält, leichter absorbiert werden. Geringere Belichtungswerte erzeugen jedoch Wärme ohne Verbrennungen. Dieser Effekt kann für eine Vielzahl von Zwecken verwendet werden. Das US-Militär verwendet Millimeterwellen, um Zielpersonen mit unangenehmer Hitze abzuwehren. Als weiteres Beispiel belebte James Lovelock 1955 gefrorene Ratten mithilfe von Mikrowellendiathermie.

Referenz

  • Andjus, R. K.; Lovelock, J. E. (1955). "Wiederbelebung von Ratten von Körpertemperaturen zwischen 0 und 1 ° C durch Mikrowellendiathermie". Das Journal of Physiology. 128 (3): 541–546.