Ein Standardproblem in der Basisstatistik ist die Berechnung der z-score eines Wertes, vorausgesetzt, die Daten sind normal verteilt und auch gegeben die bedeuten und Standardabweichung. Dieser Z-Score oder Standard-Score ist die vorzeichenbehaftete Anzahl von Standardabweichungen, um die der Wert der Datenpunkte über dem Mittelwert des gemessenen Werts liegt.
Die Berechnung von Z-Scores für die Normalverteilung in der statistischen Analyse ermöglicht es, die Beobachtung von Normalverteilungen zu vereinfachen, beginnend mit eine unendliche Anzahl von Verteilungen und Arbeiten bis zu einer normalen Standardabweichung, anstatt mit jeder Anwendung zu arbeiten angetroffen.
Alle folgenden Probleme verwenden die Z-Score-Formelund für alle von ihnen nehmen wir an, dass es sich um a handelt Normalverteilung.
Die Z-Score-Formel
Die Formel zur Berechnung des Z-Scores eines bestimmten Datensatzes lautet z = (x - μ) / σ wo μ ist der Mittelwert einer Bevölkerung und σ ist die Standardabweichung einer Population. Der absolute Wert von z repräsentiert den z-Score der Population, den Abstand zwischen dem Roh-Score und dem Populationsmittelwert in Einheiten der Standardabweichung.
Es ist wichtig zu bedenken, dass diese Formel nicht auf dem Stichprobenmittelwert oder der Abweichung beruht, sondern auf dem Populationsmittelwert und dem Populationsstandard Abweichung, was bedeutet, dass eine statistische Stichprobe von Daten nicht aus den Populationsparametern gezogen werden kann, sondern auf der Grundlage der gesamten Daten berechnet werden muss Datensatz.
Es ist jedoch selten, dass jeder Einzelne in einer Population untersucht werden kann, also in Fällen, in denen dies unmöglich ist Berechnen Sie diese Messung für jedes Bevölkerungsmitglied. Eine statistische Stichprobe kann verwendet werden, um die Berechnung zu erleichtern Z-Score.
Probefragen
Üben Sie die Verwendung der Z-Score-Formel mit diesen sieben Fragen:
- Die Ergebnisse eines Verlaufstests haben einen Durchschnitt von 80 mit einer Standardabweichung von 6. Was ist der z-Wert für einen Studenten, der beim Test 75 Punkte verdient hat?
- Das Gewicht von Schokoriegeln aus einer bestimmten Schokoladenfabrik beträgt durchschnittlich 8 Unzen mit einer Standardabweichung von 0,1 Unzen. Was ist der z-Ergebnis entsprechend einem Gewicht von 8,17 Unzen?
- Bücher in der Bibliothek haben eine durchschnittliche Länge von 350 Seiten mit einer Standardabweichung von 100 Seiten. Was ist der z-Bewertung entsprechend einem Buch mit einer Länge von 80 Seiten?
- Die Temperatur wird an 60 Flughäfen in einer Region aufgezeichnet. Die durchschnittliche Temperatur beträgt 67 Grad Fahrenheit mit einer Standardabweichung von 5 Grad. Was ist der z-score für eine Temperatur von 68 Grad?
- Eine Gruppe von Freunden vergleicht, was sie beim Süßes oder Saures erhalten haben. Sie stellen fest, dass die durchschnittliche Anzahl der erhaltenen Bonbonstücke 43 beträgt, mit einer Standardabweichung von 2. Was ist der z-Bewertung entsprechend 20 Süßigkeiten?
- Das mittlere Wachstum der Baumdicke in einem Wald beträgt 0,5 cm / Jahr mit einer Standardabweichung von 0,1 cm / Jahr. Was ist der z-Bewertung entsprechend 1 cm / Jahr?
- Ein bestimmter Beinknochen für Dinosaurierfossilien hat eine durchschnittliche Länge von 5 Fuß mit einer Standardabweichung von 3 Zoll. Was ist der z-Punkt, der einer Länge von 62 Zoll entspricht?
Antworten auf Beispielfragen
Überprüfen Sie Ihre Berechnungen mit den folgenden Lösungen. Denken Sie daran, dass der Prozess für all diese Probleme insofern ähnlich ist, als Sie den Mittelwert vom angegebenen Wert subtrahieren und dann durch die Standardabweichung dividieren müssen:
- Das z-score von (75 - 80) / 6 und ist gleich -0,833.
- Das z-score für dieses Problem ist (8.17 - 8) /. 1 und ist gleich 1.7.
- Das z-score für dieses Problem ist (80 - 350) / 100 und ist gleich -2,7.
- Hier ist die Anzahl der Flughäfen eine Information, die zur Lösung des Problems nicht erforderlich ist. Das z-score für dieses Problem ist (68-67) / 5 und ist gleich 0,2.
- Das z-score für dieses Problem ist (20 - 43) / 2 und gleich -11,5.
- Das z-score für dieses Problem ist (1 - .5) /. 1 und gleich 5.
- Hier müssen wir darauf achten, dass alle Einheiten, die wir verwenden, gleich sind. Es wird nicht so viele Umrechnungen geben, wenn wir unsere Berechnungen mit Zoll durchführen. Da ein Fuß 12 Zoll hat, entsprechen fünf Fuß 60 Zoll. Das z-score für dieses Problem ist (62 - 60) / 3 und ist gleich .667.
Wenn Sie alle diese Fragen richtig beantwortet haben, herzlichen Glückwunsch! Sie haben das Konzept der Berechnung des Z-Scores vollständig verstanden, um den Wert der Standardabweichung in einem bestimmten Datensatz zu ermitteln!