Was bedeutet das Wort Algebra überhaupt?

Algebra ist ein Zweig der Mathematik, der Zahlen durch Buchstaben ersetzt. In der Algebra geht es darum, das Unbekannte zu finden oder reale Variablen in Gleichungen zu setzen und sie dann zu lösen. Algebra kann enthalten echt und komplexe Zahlen, Matrizen und Vektoren. Ein algebraische Gleichung stellt eine Skala dar, bei der das, was auf einer Seite der Skala getan wird, auch auf der anderen Seite getan wird und Zahlen als Konstanten fungieren.

Der wichtige Zweig der Mathematik reicht Jahrhunderte zurück, bis in den Nahen Osten.

Geschichte

Algebra wurde von erfunden Abu Ja'far Muhammad ibn Musa al-Khwarizmi, ein Mathematiker, Astronom und Geograph, der um 780 in Bagdad geboren wurde. Al-Khwarizmis Abhandlung über Algebra, al-Kitab al-Mukhtasar fi hisab al-jabr waʾl-muqabala („Das umfassende Buch über die Berechnung durch Fertigstellung und Abwägung“), das um 830 veröffentlicht wurde, enthielt Elemente griechischer, hebräischer und hinduistischer Werke, die mehr als 2000 Jahre aus der babylonischen Mathematik stammen vorhin.

instagram viewer

Der Begriff al-jabr im Titel führte das Wort "Algebra", als das Werk einige Jahrhunderte später ins Lateinische übersetzt wurde. Obwohl die Grundregeln der Algebra dargelegt sind, hatte die Abhandlung ein praktisches Ziel: zu lehren, wie al-Khwarizmi es ausdrückte:

"... was in der Arithmetik am einfachsten und nützlichsten ist, wie es Männer in Fällen von Erbschaft, Vermächtnis, Teilung, Rechtsstreitigkeiten und Handel und in all ihren Fällen ständig benötigen Umgang miteinander oder wo das Messen von Land, das Graben von Kanälen, geometrische Berechnungen und andere Objekte verschiedener Art und Art sind besorgt."

Die Arbeit umfasste Beispiele sowie algebraische Regeln, um den Leser bei praktischen Anwendungen zu unterstützen.

Verwendung der Algebra

Algebra ist in vielen Bereichen weit verbreitet, einschließlich Medizin und Buchhaltung, kann aber auch für den Alltag nützlich sein Probleme lösen. Zusammen mit der Entwicklung von kritischem Denken - wie Logik, Muster sowie deduktiv und induktiv Argumentation - Das Verständnis der Kernkonzepte der Algebra kann Menschen helfen, komplexe Probleme besser zu bewältigen mit Zahlen.

Dies kann ihnen am Arbeitsplatz helfen, wo reale Szenarien unbekannter Variablen in Bezug auf Ausgaben und Gewinne erfordern, dass Mitarbeiter algebraische Gleichungen verwenden, um die fehlenden Faktoren zu bestimmen. Angenommen, ein Mitarbeiter muss bestimmen, mit wie vielen Kisten Waschmittel er den Tag begonnen hat, wenn er 37 verkauft hat, aber noch 13 übrig hat. Die algebraische Gleichung für dieses Problem wäre:

  • x - 37 = 13

wobei die Anzahl der Waschmittelschachteln, mit denen er begonnen hat, durch x dargestellt wird, das Unbekannte, das er zu lösen versucht. Algebra versucht, das Unbekannte zu finden, und um es hier zu finden, manipuliert der Mitarbeiter die Skala der Gleichung, um x auf einer Seite zu isolieren, indem er 37 zu beiden Seiten addiert:

  • x - 37 + 37 = 13 + 37
  • x = 50

Der Mitarbeiter begann den Tag mit 50 Kisten Waschmittel, wenn er nach dem Verkauf von 37 noch 13 Kisten übrig hatte.

Arten von Algebra

Es gibt zahlreiche Zweige der Algebra, aber diese werden allgemein als die wichtigsten angesehen:

Grundstufe: Ein Zweig der Algebra, der sich mit den allgemeinen Eigenschaften von Zahlen und den Beziehungen zwischen ihnen befasst

Abstrakt: befasst sich eher mit abstrakten algebraischen Strukturen als mit den üblichen Zahlensystemen

Linear: konzentriert sich auf lineare Gleichungen wie lineare Funktionen und ihre Darstellungen durch Matrizen und Vektor Räume

Boolescher Wert: wird verwendet, um digitale (logische) Schaltkreise zu analysieren und zu vereinfachen, sagt Tutorials Point. Es werden nur Binärzahlen wie 0 und 1 verwendet.

Kommutativ: untersucht kommutative Ringe - Ringe, in denen sich Multiplikationsoperationen befinden kommutativ.

Computer: studiert und entwickelt Algorithmen und Software zur Manipulation mathematischer Ausdrücke und Objekte

Homologisch: verwendet, um nichtkonstruktive Existenzsätze in der Algebra zu beweisen, sagt der Text "Eine Einführung in die homologische Algebra"

Universal: untersucht gemeinsame Eigenschaften aller algebraischen Strukturen, einschließlich Gruppen, Ringe, Felder und Gitter, Notizen Wolfram Mathworld

Relational: Eine prozedurale Abfragesprache, die eine Beziehung als Eingabe verwendet und eine Beziehung als Ausgabe generiert, sagt Geeks für Geeks

Algebraische Zahlentheorie: Ein Zweig der Zahlentheorie, der die Techniken der abstrakten Algebra verwendet, um die ganzen Zahlen, rationalen Zahlen und ihre Verallgemeinerungen zu untersuchen

Algebraische Geometrie: studiert Nullen von multivariaten Polynome, algebraische Ausdrücke, die reelle Zahlen und Variablen enthalten

Algebraische Kombinatorik: untersucht endliche oder diskrete Strukturen wie Netzwerke, Polyeder, Codes oder Algorithmen, Notizen Fakultät für Mathematik der Duke University.